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Abstract As a global optimization problem, planar minimum weight triangulation prob-
lem has attracted extensive research attention. In this paper, a new asymmetric graph called
one-sided β-skeleton is introduced. We show that the one-sided circle-disconnected (

√
2β)-

skeleton is a subgraph of a minimum weight triangulation. An algorithm for identifying
subgraph of minimum weight triangulation using the one-sided (

√
2β)-skeleton is proposed

and it runs in O(n4/3+ε + min{κ log n, n2 log n}) time, where κ is the number of intersected
segmented between the complete graph and the greedy triangulation of the point set.

Keywords Minimum weight triangulation · Inclusion region · One-sided β-skeleton

1 Introduction

Let P be a set of points in the Euclidean plane and let n denotes its cardinality. A triangulation
of P , denoted by T (P), is defined as a maximal set of non-intersecting straight-line segments
connecting points in P . The weight of T (P), denoted by |T (P)|, is the sum of the lengths
of all edges in T (P). The minimum weight triangulation, or MWT in short, is defined as a
triangulation of P with the minimum weight. Computing MWT for a planar point set, which
is certainly a global optimization problem, is a well known problem in computational geom-
etry and has attracts extensive research attention. Its complexity status remains unknown for
over 25 years. Until very recently, the problem is shown to be NP-hard [14].

The approaches for computing MWT can be classified in two categories. The first category
is to compute approximations. Existing algorithms include a constant factor approximation
algorithm proposed in [12] and a quasi-polynomial time approximation scheme proposed in
[15]. The second category is to identify subgraphs of the MWT, where the results can be
further divided into inclusion region method and L MT -skeleton method.
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The inclusion region refers to a region around two points x and y, and if there exists
no further points in P inside this region, the edge xy belongs to MWT(P). β-skeleton is a
well-known inclusion region (proposed in [11]) which is defined as a region formed by two
disks of diameter β|xy| passing through both x and y. If this region is empty of further points,
the edge xy is included in β-skeleton and thus belongs to MWT(P) [11]. In [7], Cheng and
Xu claim that edges in 1.1768-skeleton are in MWT, which is close to β = 1.154 where
a counterexample is available. Aichholzer et al. [2] shows that for convex or near-convex
polygon edges β-skeleton with β > 1.154 are in MWT(P). In [17], Wang and Yang show
that 1.1603 is a lower bound for β for a general point set. Yang et al. [18] gives a different
inclusion region: if the union of the two disks centered at x and y with radius |xy| is empty of
points, then xy belongs to MWT. It is interesting to note that the above inclusion regions are
all symmetric. One might expect that an asymmetric inclusion region may have the potential
to produce a larger subgraph for MWT. According to the best of the author’s knowledge,
there is only one work on asymmetric inclusion region which is [16]. We will review their
work in Sect. 1.1.

The locally minimum triangulation is a triangulation if every point-empty quadrilateral
drawn from it is optimally triangulated. L MT (P) is the intersection of all locally minimal
triangulation for P [8]. One easily sees that L MT (P) is a subgraph of MWT(P). L MT -
skeleton is a subgraph of L MT (P) and can be identified by a simple method as described
in [3]. However, L MT may generate linear number of disconnected components even for
uniformly distributed points [4].

Although minimum weight triangulation problem is NP-hard, it is still interesting to iden-
tify the large subgraph of it as the more edges we identified, the better chance MWT can
be completed in a short time by some existing methods. For example, recent research work
shows that given a point set with k inner points, MWT can be computed in O(6kn5 log n)

time [9], and given k components of P , MWT can be completed in O(nk+2) time [6]. Fur-
thermore, identifying subgraph deepens our understanding on MWT, which may eventually
help us design a better approximation scheme for MWT.

1.1 Previous work on asymmetric inclusion region

The main motivation for us to study the asymmetric inclusion region is to identify more
edges which belong to an MWT. According to the best of the author’s knowledge, Wang
et al.’s work in [16] is the only result on the asymmetric inclusion region. More precisely, it
proposes a sufficient condition for edge-testing rather than some fixed region like β-skeleton.
Two conditions are presented in [16] and we will describe them in turn.

The first condition is that the edge xy belongs to MWT(P) if all of the following are
satisfied: “(1) the interior of the triangle formed with x, y and any point above xy con-
tains no points, i.e., star-shaped condition; (2) for any two points vi , v j above xy, |xy| <

min{|xvi |, |yv j |} and no points are contained in union of two ellipses, which has vi , v j as
foci and x or y as a boundary point, within the fan-area bounded by vi y and v j x . It is the
ellipse-disconnected condition. (3) The diameter of points below xy (inclusive) is equal to
|xy|, where the diameter of a planar point set is the longest segment with both endpoints in
the set” [16].

The second condition is that the edge xy belongs to MWT(P) if all of the following
are satisfied: “(1) for any two points vi above xy and v j below xy, the diameter of points
above xy is smaller than min{|viv j |}, i.e., the thin condition; (2) for any point v above
xy, |xy| < min{|xv|, |yv|} and no points below xy is contained in the circle centered at v
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and with vx or vy as radius within the fan-area bounded by vx and vy. (3) The diameter of
points below xy (inclusive) is equal to |xy|” [16].

Although the work in [16] is original, it can be seen that the above conditions in [16] are
not easy to satisfy in general, and thus a novel condition loosening the above requirement
would have the potential to identify more edges, which motivates this work.

In this paper, a new asymmetric graph called one-sided β-skeleton, which loosens the
conditions in [16], is introduced. We show that the one-sided circle-disconnected (

√
2β)-

skeleton is a subgraph of a minimum weight triangulation. The new skeleton can find edges
which cannot be identified using other inclusion region methods. An algorithm for identifying
subgraph of minimum weight triangulation using the one-sided (

√
2β)-skeleton is proposed

and it runs in O(n4/3+ε + min{κ log n, n2 log n}) time, where κ is the number of intersected
segmented between the complete graph and the greedy triangulation of the point set.

The rest of the paper is organized as follows: Sect. 2 presents the definitions and the
brief overview of Keil’s framework [10]. Section 3 presents the major results of this paper.
Section 4 presents an algorithm to identify the new inclusion region. A summary of work is
given in Sect. 5.

2 Preliminaries

2.1 Definition

Recall that β-skeleton is defined as follows. An edge xy is included in β-skeleton if two
disks of diameter β|xy| passing through both x and y are empty of points. For simplicity,
the one-sided β-skeleton refers to the upper part of a β-skeleton throughout the paper. We
now define the concept of “circle-disconnected” as in [16]. The points above a line segment
xy, denoted by V +

xy , are called circle-disconnected if for any point v above xy, the following
conditions hold:

1. The fan-area bounded by vx and vy below xy are empty of points.
2. For any vertex v j below xy such that vv j intersects the interior of the segment xy, we

have

d(v, v j ) > max
vi ∈V +

xy

d(v, vi ),

where d(·, ·) is the Euclidean distance function. Refer to Fig. 1 for the circle-disconnected
condition. A one-sided circuit-disconnected (

√
2β)-skeleton is defined as a (

√
2β)-skeleton

with one side of the β-shape being circuit-disconnected. One easily sees the following fact
(as observed in [10] for the case of double-sided β-skeleton):

Observation 2.1 For any v ∈ V +
xy outside one-sided (

√
2β)-skeleton, � xvy < π/3.

In this paper, we will show that if an edge xy is in the one-sided circle-disconnected
(
√

2β)-skeleton (or
√

2-skeleton in short), then the edge xy is in MWT(P). Compared to
the first condition in [16], our condition does not need star-shaped condition and that the
diameter for points below xy is |xy|, and compared to their second condition, our condition
does not need thin condition and that the diameter for points below xy is |xy|. It is also
interesting to compare the new subgraph to the (1.1768β)-skeleton as shown in Fig. 2. In
Fig. 2a, since there is a point in the lower disk of the (1.1768β)-skeleton, the edge does
not belong to the MWT. However, it is not hard to see that the edge is a subgraph of MWT
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Fig. 1 Circle-disconnected
condition

Fig. 2 Comparison of
(1.1768β)-skeleton and
one-sided circle-disconnected
(
√

2β)-skeleton:
(a) (1.1768β)-skeleton,
(b) one-sided circle-disconnected
(
√

2β)-skeleton

according to our condition as shown in Fig. 2b. One could also see the limitation of the new
subgraph. If we move all the points to be barely outside the (1.1768β)-skeleton (very close
to the boundary), they will not be outside the (

√
2β)-skeleton in either side. Subsequently,

the edge does not belong to MWT by the new condition. However, it belongs to MWT since
it is in the (1.1768β)-skeleton.

Our proof follows the framework proposed by Keil in [10] and then adopted by Cheng
and Xu in [7]. For completeness, we include the description of the framework as follows.

2.2 Brief overview to Keil’s theorem [10, 7]

Suppose to the contrary, there exists an edge xy in the one-sided circle-disconnected√
2-skeleton but not in MWT(P). As such, we insert xy to MWT(P), remove all intersecting

edges and re-triangulate the two resulting polygons on either side of xy. We are to show that
the resulting triangulation will have strictly less weight than that of MWT(P) [10].

Assuming that there are k edges intersecting xy in MWT(P). We first sort these edges in
increasing length and obtain E ′ = {ei , 1 ≤ i ≤ k} such that |ei−1| ≤ |ei |, 2 ≤ i ≤ k. For
simplicity, we refer to the endpoints of edges in E ′ above xy as “upper” endpoints and other
endpoints as “lower” endpoints. The polygonal region formed by xy and the upper endpoints
of E ′ is incrementally re-triangulated as follows. Suppose that we have computed a sequence
of triangulated polygon P1, P2, . . . , Pi−1. Pi is equal to Pi−1 if the upper endpoint vi of ei is
inside Pi−1. Otherwise, Pi is the union of Pi−1 with a newly triangulated polygon P ′

i . In this
case, ei must intersect some boundary of Pi−1 and denote the closest intersecting boundary
edge by vavb. �vavivb contains a set of some upper endpoints, denoted by Vi , of E ′. We
compute a simple path through linking all vertices of the set {va, vb, vi }∪Vi from left to right
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and arbitrarily triangulate the polygon formed by the simple path and vavb. The resulting
polygon is P ′

i [10,7].
A critical observation is that every inserted edge in Pi is shorter than ei . We first inductively

assume that every inserted edge in Pi−1 is shorter than ei−1. Clearly, each new edge in Pi

(precisely, in P ′
i ) has length at most max{|vavi |, |vavb|, |vivb|}. Note that vavb is shorter than

ei−1 and thus ei by induction assumption [10,7]. We only describe how to prove |vavi | < |ei |
and vivb can be similarly handled.

• If va lies in �xvi y (note that vi can be x or y), by Lemma 3.2 below, vavi is shorter
than ei .

• If va does not lie in �xvi y, then va must lie in a triangle vmvnvi , where vm and vn are hull
vertices on the convex hull of the chain from x to vi on Pi . Therefore, |vavi | is at most
max{|vmvi |, |vmvn |, |vnvi |}. Note that in processing ei , only vi may become a hull vertex
and this is true for e1, e2, . . . , ei−1. Since va and vb are hull vertices, vm and vn must be
added before processing ei and they are not added as vertices in Vj , j = 1, 2, . . . , i − 1.
That is, their corresponding edges em, en must satisfy |em | ≤ |ei | and |en | ≤ |ei |. Apply-
ing Lemma 3.3 to vmvi , we have that |vmvi | < max{|em |, |ei |} = |ei |. Similarly, we get
|vnvi |, |vmvn | < |ei | and reach that |vavi | < |ei |.

See [10,7] for the further details about the framework. Note that the proof for the part
below xy is symmetric to the proof just described since the conclusions in Lemma 3.2 and
Lemma 3.3 are symmetric. Therefore, in this way we inductively obtain a new triangulation
with weight strictly less than that of MWT(P), which leads to contradiction.

Summarizing the above, we reach the following theorem:

Theorem 2.2 In a planar point set P, let x, y be the endpoints of an edge in the one-sided
circle-disconnected (

√
2β)-skeleton, then edge xy belongs to MWT(P).

3 Main contribution

Lemma 3.1 For any θ, γ where 0 < γ < θ < π , the following holds

sin θ − sin(θ − γ ) <
sin γ

sin θ
.

Proof

sin θ − sin(θ − γ ) <
sin γ

sin θ
(1)

⇔ 2 cos
2θ − γ

2
sin

γ

2
<

2 sin γ
2 cos γ

2

sin θ
(2)

⇔ cos
2θ − γ

2
<

cos γ
2

sin θ
(3)

⇔
(

cos θ cos
γ

2
+ sin θ sin

γ

2

)
sin θ < cos

γ

2
(4)

⇔ sin θ cos θ + sin2 θ tan
γ

2
< 1. (5)
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This is true by noting that

sin θ ≤ 1 (6)

⇔ sin θ cos θ + (1 − cos θ) sin θ ≤ 1 (7)

⇔ sin θ cos θ + (
1 − cos2 θ

) sin θ

1 + cos θ
≤ 1 (8)

⇔ sin θ cos θ + sin2 θ
sin θ

1 + cos θ
≤ 1 (9)

⇔ sin θ cos θ + sin2 θ tan
θ

2
≤ 1, (10)

and that γ < θ . 	


Lemma 3.2 Let xy be an edge in the circle-disconnected (
√

2β)-skeleton of a set P of points
in the plane. Let p, q be two points on the different sides of the line through xy such that pq
intersects the interior of segment xy. Suppose that p is above xy. Let s be any point inside
�pxy but outside circle-disconnected (

√
2β)-skeleton. Let r be any point inside �qxy. Then

|px |, |py|, |qx |, |qy|, |ps|, |qr | < |pq|.

Proof Refer to Fig. 3. According to the circle-disconnected condition, |px |, |py| < |pq|.
Observation 2.1 says � xpy < π/3, which implies |xy| < |pq|. ps is an edge inside �pxy,
thus |ps| < |pq|.

We then prove |qx |, |qy| < |pq|. Since q is outside the circle-disconnected region, we can
compute a point x ′ on pq such that |px | = |px ′|. Since � xpq < � xpy < π/3, � pxx ′>π/3.

Fig. 3 Proof of Lemma 3.2
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Fig. 4 pq and rs intersect below
xy

It follows that � pxq > π/3. Therefore, |xq| < |pq|. Similarly, we can show |yq| < |pq|.
Since r lies in �qxy, |qr | < |pq|. 	


Lemma 3.3 Let x and y be the endpoints of an edge in the one-sided circle-disconnected
(
√

2β)-skeleton of a set P of points in the plane. Let p, q, r, s be four other distinct points of
P such that pq intersects the interior of xy, rs intersects the interior of xy, pq and rs does
not intersect the interior of each other and p and s lie on the same side of the line through
xy. Then |qr |, |ps| < max{|pq|, |rs|}.

Proof Without loss of generality, assume that qr is below xy and ps is above xy, and
|xy| = 1. Note that |ps| < |pq|, |rs| by the circle-disconnected condition. We first con-
sider the situation when lines extending pq, rs are parallel or intersect below xy. Sup-
pose to the contrary that qr is the longest edge among ps, pq, rs (refer to Fig. 4), then in
�sqr, � qsr > � rqs. Since |ps| < |pq|, � pqs < � psq . Therefore, � pqr < � psr . Simi-
larly, we have � qrs < � spq . It follows that � spq + � psr > π since pqrs forms a convex
quadrilateral. This contradicts the assumption that pq and rs intersect below xy or they are
parallel.

The hard part is when two extended lines intersect above xy. Since it is a (
√

2β)-skeleton,
we can build a square with a side being xy. Refer to Fig. 5 where |xy| = |xa| = 1. We
first consider the case where pq, rs intersect the interior of ab. Let x ′ and y′ be the inter-
section of pq and xy, and rs and xy, respectively. |x ′y′| ≤ 1. Denote the angles α, β, γ as
shown in Fig. 5. Without loss of generality, assume that α ≥ β. Clearly, α + β > 2π

3 by
Observation 2.1.

We begin with a simple case where r = y′. Let p′, s′ denote the intersection of ab with
pq and rs, respectively. Denote |xa| by h and |p′s′| by m. We are to show |p′q| > |qr | (then
trivially |qr | < |pq|). Since

|qr | = |x ′y′|
sin γ

· sin α, (11)

|p′q| = |x ′y′|
sin γ

· sin(α − γ ) + h

sin α
, (12)

|x ′y′| = m + h

tan α
+ h

tan β
, (13)
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Fig. 5 pq, rs intersect above xy and intersect the interior of ab

|p′q| > |qr | holds if

|x ′y′|
h

· [sin α − sin(α − γ )] <
sin γ

sin α
. (14)

Note that h = 1 and |x ′y′| ≤ 1, so |p′q| > |qr | holds if

[sin α − sin(α − γ )] <
sin γ

sin α
. (15)

Note that α can be larger than π
2 as shown in Fig. 5, however, this will not influence the proof

as |x ′y′| remains the same as

|x ′y′| = m + h

tan β
− h

| tan α| = m + h

tan β
+ h

tan α
. (16)

We thus only need to verify that Eq. 15 holds for π
3 ≤ α ≤ π and β, γ < α since α+β ≥ 2π

3 ,
which is true according to Lemma 3.1. We also need to consider the case where q = x ′ as
shown in Fig. 5. In that case, we carry out the above process and find that the claim is valid if

[sin β − sin(β − γ )] <
sin γ

sin β
, (17)

where 0 < γ < β ≤ π
2 . This is also true according to Lemma 3.1.

We now move endpoints of qr downward. The effect of this is that we introduce another
“height”, denoted by h′, to the graph as shown in Fig. 6, where

|q ′r | = |x ′y′| + h′

tan α
+ h′

tan β
. (18)

Equation 14 becomes

|q ′r |
h + h′ · [sin α − sin(α − γ )] <

sin γ

sin α
. (19)
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Fig. 6 Moving r

We have

|q ′r |
h + h′ (20)

= |x ′y′| + h′
tan α

+ h′
tan β

h + h′ (21)

= m + h
tan α

+ h
tan β

+ h′
tan α

+ h′
tan β

h + h′ (22)

<
|x ′y′|

h
. (23)

Therefore, the claim still holds. We similarly prove another case as shown in Fig. 6. 	


4 The algorithm

Our algorithm for identifying edges in one-sided circle-disconnected
√

2-skeleton is similar
to the method in [16]. One easily sees that xy in one-sided circle-disconnected

√
2-skeleton

satisfies the condition that any edge in P × P crossing xy is longer than xy, i.e., xy is a
light edge. Since light edges form a subgraph of the greedy triangulation GT of P , we can
compute it in O(n) time [13] from a Delaunay triangulation. We then take each edge in
GT (P) as xy in Lemma 3.2 and check whether it satisfies our condition. More precisely,
we have to compute all edges intersecting any edge in GT (P), and in the worst case, we
can have �(n3) intersecting pairs (i.e., two segments intersect the interior of each other).
However, usually the number is much smaller and we describe an algorithm for computing
the intersecting pairs as follows.

Given a segment l, all segments intersected by l can be reported in O(n1+ε/
√

s + κ) time
with O(s1+ε) time for preprocessing where s (n1+ε ≤ s ≤ n2+ε) is a parameter [1] and κ

is the number of total segments returned. This means that we can find segments intersected
by all linear number of segments in greedy triangulation in O(n4/3+ε) + κ time (including
preprocessing time) by setting s = n4/3.

Given the intersected segments, we are to verify the first condition and the second condi-
tion in the circle-disconnected condition. We begin with the second condition. For a segment
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xy, we have obtained all κxy intersected segments. For each of endpoints above xy, we
compute the maximum distance to the endpoints of intersected segments in O(κxy) time, and
perform the test of d(v, v j ) > maxvi ∈V +

xy
d(v, vi ) for all v in O(κxy) time. Thus, verifying

the second condition in circle-disconnected definition needs O(κ) time.
Since our one-sided β-skeleton is part of a β-skeleton, we need to take the running time

for computing the β-skeleton into account. β-skeleton involves computing the diameter of
points. For each query, we have computed all intersected segments from the previous step
and thus we know all the points. The diameter can be computed in O(κ log κ) time. Note
that we have only linear number of points and thus the total running time is also bounded
above by O(n2 log n).

Both β-skeleton test and the first condition in the circle-disconnected test involve range
query. We need to perform range counting for fan-areas of each segment in the greedy tri-
angulation. A fan-area is certainly a Tarski cell and is defined by a constant number of
constant-degree polynomials. We can therefore linearize it and answer the resulting con-
stant-dimensional half-space range counting in O(log n) time per query by [5]. There are
O(κ) queries, and thus the total time is O(κ log n). We reach the following theorem:

Theorem 4.1 Identifying subgraph for MWT(P) using one-sided (
√

2β)-skeleton can be
performed in O(n4/3+ε + min{κ log n, n2 log n}) time, where κ is the total number of inter-
sected segments and ε is any positive constant.

5 Conclusion

This paper studies a global optimization problem, namely, the planar minimum weight tri-
angulation problem. A new asymmetric inclusion region for identifying a subgraph of the
minimum weight triangulation is proposed. An algorithm for identifying subgraph using
the one-sided (

√
2β)-skeleton is proposed and it runs in O(n4/3+ε + min{κ log n, n2 log n})

time, where κ is the number of total intersected segments. Identifying subgraph deepens our
understanding on MWT, which may eventually help us design a better approximation scheme
for MWT.
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